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A Theory for Two-Component Diffusion in Zeolites 

In recent years, models have been devel- 
oped to describe diffusion of point-like mol- 
ecules in zeolites (1-9), with a particular 
emphasis on zeolite catalyst ZSM-5. In the 
present model, an attempted jump of a mole- 
cule to an occupied site results in the mole- 
cule remaining at its original site. This model 
has received the most attention in the litera- 
ture relating to zeolites (1, 6-9). The same 
model is sometimes referred to as a "mini- 
mally interacting lattice gas" in the physics 
literature, where self-diffusion has been ex- 
tensively studied, e.g. (10-12). 

We use the simulation method employing 
Poisson-distributed event times described 
previously (8), with two distinguishable dif- 
fusing species designated A and B. It is as- 
sumed that components A and B have iden- 
tical diffusive and adsorptive properties. All 
of the simulation results reported here were 
obtained by averaging 400 simulations con- 
ducted on an initially empty 100 × 20 lattice. 
The lateral edges abutted impermeable sites 
and the top and bottom edges were exposed 
to gases of constant composition and 
pressure. 

The apparent diffusion coefficient D~,  of 
component A, for example, is defined by: 

JA = --DAVOA, (1) 

where JA is the measured flux of component 
A between two adjacent rows and V0A is 
the measured gradient of A concentration 
between the same two adjacent rows. 

Co-diffusion simulations were conducted, 
in which, the top edge of the lattice was 
exposed to gaseous A and B at constant 
composition and pressure, and the bottom 
edge was exposed to a" vacuum. The co- 
diffusion simulation results at steady state 
can be summarized by 

D~ = D~ = D o, 

where Do is the single component diffusion 
coefficient, and 

0B 
rob = voA. (3) 

Counter-diffusion simulations were also 
conducted, in which, the lattice was ex- 
posed to pure A at the top of the lattice and 
pure B at the bottom of the lattice at the 
same pressure. The combined occupancy 
0T = OA + 0B was constant throughout the 
lattice at steady state. 

Figure 1 shows the steady state concen- 
tration profile and apparent diffusivity of A, 
for a pressure such that 0T = 0.9 at steady 
state. There is an edge effect which in- 
creases the apparent diffusivities near the 
edges, particularly for higher occupancy 
simulations. At steady state, the (bulk) dif- 
fusivity between internal rows (rows 4 to 
17) is approximately constant. The counter- 
diffusion results, in the bulk, at steady state 
can be summarized by 

D~ = D~ = Do(1 - OT)f(OT) , (4) 

and 

V0A = --V08. (5) 

f(0T) is the (bulk) correlation factor (10-12) 
for self-diffusion, which accounts for corre- 
lations in the movement of adjacent mole- 
cules. According to Tahir-Kheli and Elliot 
(TKE) (11), 

f ( 0 T )  = (1 + (cos 6))/ 

( l q  2 - - 3 0 T  6)) 
- OT (cos (6) 

where for a square lattice, (cos ~b) = 
-0.36338023. A more accurate approxima- 
tion has subsequently been provided by 

(2) Tahir-Kheli and E1-Meshad (TKEM) (12). 
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FIG. 1. Steady state pure counter-diffusion at a 
steady state combined concentration of 0r = 0.9. 
( ) steady state concentration profile for compo- 
nent A, ( ) apparent diffusivity of component 
A. 

The bulk correlation factors are plotted 
together with the TKE and TKEM theories 
in Fig. 2. The difference between the simula- 
tion and both theories is within the statistical 
uncertainty of the simulation results. Also 
shown in Fig. 2 are the values for the edge 
correlation factor (for diffusion between the 
two rows nearest the edge of the lattice). 

The diffusion equation is 

~j:) = - ( D'1 DlZ')(VOAI (7)" 

\ D z l  D22/\t~OB/" 

Equating the fluxes in Eq. (7) with the fluxes 
obtained from the co- and counter-diffusion 
simulations, Eqs. (1)-(5), and solving for 
the diffusion matrix D gives: 

D = D O ( (1  - OBg) OAg ~, 
OBg (1 - OAg)} (8) 

where 

g(OT) =f(OT) + 
1 - -  f ( O T )  

0T 

The factor g(OT) is approximately equal to 
1.571--0.5710T. 

The incremental change in the vector oc- 
cupancy of an internal row n, during a short 
time St, according to a finite difference ap- 
proximation (FDA) to the diffusion equa- 
tion, is given by 

80n - ( D " - I  + D " )  (0"-1 - 0") 8t 2 

_ , 9 ,  

where the first term is the flux from row 
n - 1 to row n and the second term is the 
flux from row n to row n + 1. 

The incremental change in an edge row 
(for example row 1) is given by 
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FIG. 2. Correlation factors for pure counter-diffusion 
determined from theory and Monte Carlo simulations. 
(0) bulk correlation factor from Monte Carlo simula- 
tions, ( ) correlation factor according to Ref. (11), 
( - - - - - - )  correlation factor according to Ref. (12), (&) 
edge correlation factor from Monte Carlo simulations, 
(*) estimated limits of the edge correlation factor, 
w h e r e  fedge (OT = O) = 1 a n d  fcdgc (OT = 1) = 

(f(O,r) + 1)/2 (as there is no correlation resulting from 
a molecule jumping from an edge site to one deeper in 
the lattice as Or --~ 1). 
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FIG. 3. Concentration depth profiles of component B 
for "mixed-diffusion" boundary conditions (see text). 
Parameter = time (~'). ( ) Monte Carlo simula- 
tion, ( - - - - - - )  proposed diffusion theory. 

80____~1 = ( P A ( 1 -  0 T , I ) -  D00A,I) 

8t \PB(1 0T.1) DoOB,~/ 
(. I ) 1 +  D2)  

2 ( 0 1 -  0z)' (10) 

where the first term is the flux from the 
gaseous phase to row 1 (according to the 
usual two component Langmuir isotherm) 
and the second term is the flux from row 
1 to row 2. 

There were no significant differences be- 
tween the simulation results and FDA val- 
ues for pure co- and counter-diffusion 
boundary conditions in the bulk, so a 
"mixed-diffusion" simulation was con- 
ducted, in which component A was driven 
by a large concentration gradient, whereas 
there was no (significant) overall concentra- 
tion gradient of component B. The concen- 
tration profiles for B are shown in Fig. 3. 
Once again, the FDA correctly predicts the 
transient and steady-state behavior in the 
bulk. The nonlinearity in the steady state 
single component profiles is correctly pre- 

dicted by the present theory, whereas the 
previous theory (7, 9) predicts linear steady 
state profiles for the same boundary condi- 
tions. At steady state, component B is "dif- 
fusively entrained" by the greater flux of 
component A, due to the driving force for 
diffusion including the concentration gradi- 
ent of A. 

We have proposed a theory for two com- 
ponent diffusion in zeolites where the single 
component diffusivities are equal. All en- 
tries in the diffusion matrix have nonlinear 
terms which, in general, produce nonlinear 
steady state profiles and diffusive entrain- 
ment of one of the components. The present 
theory exhibits qualitative and quantitative 
differences from previous numerical ap- 
proximations, which can become significant 
at high occupancies. These differences also 
appear in the corresponding Monte Carlo 
results and hence are inherent in the physi- 
cal model. Although it appears that the the- 
ory can only be solved numerically, it has 
the significant advantage of having no ad- 
justable parameters (except for the single 
component diffusivity). 

Further research is required to generalize 
this approach to multicomponent systems in 
which the single component diffusivities are 
different. 
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